otázka |
Odpoveď |
Suppose we want to arrange the n numbers stored in an array such that all negative values occur before all positive ones. The minimum number of exchanges required in the worst case is: začať sa učiť
|
|
|
|
|
The time complexity of linear search is given by: začať sa učiť
|
|
|
|
|
a = 0 N=1000 for i in range(0, N,1): for j in range(N, 0,-1): a = a + i + j; print(a) The running time is: začať sa učiť
|
|
|
|
|
The complexity of recursive Fibonacci series is začať sa učiť
|
|
|
|
|
N=5 a = 0 i = N while (i > 0): a = a + i; i = i/2; The running time is: začať sa učiť
|
|
|
|
|
Consider the following function: T(n) = n if n ≤ 3 T(n) = T(n-1) + T(n-2) - T(n-3) otherwise The running time is: začať sa učiť
|
|
|
|
|
The time complexity of an algorithm T(n), where n is the input size, is given by T(n) = T(n - 1) + 1/n if n > 1 The order of this algorithm is začať sa učiť
|
|
|
|
|
Which of the following best describes the useful criterion for comparing the efficiency of algorithms? začať sa učiť
|
|
|
|
|
Which of the following is not O(n2)? začať sa učiť
|
|
|
|
|
Suppose T(n) = 2T(n/2) + n, T(0) = T(1) = 1 Which one of the following is false začať sa učiť
|
|
|
|
|
The following statement is valid. log(n!) = \theta (n log n). začať sa učiť
|
|
|
|
|
To verify whether a function grows faster or slower than the other function, we have some asymptotic or mathematical notations, which is_________. začať sa učiť
|
|
Big Omega Ω (f), Big Oh O (f), Big Theta θ (f)
|
|
|
An algorithm performs lesser number of operations when the size of input is small, but performs more operations when the size of input gets larger. State if the statement is True or False or Maybe. začať sa učiť
|
|
|
|
|
An algorithm that requires ........ operations to complete its task on n data elements is said to have a linear runtime. začať sa učiť
|
|
|
|
|
The complexity of adding two matrices of order m*n is začať sa učiť
|
|
|
|
|
The order of an algorithm that finds whether a given Boolean function of 'n' variables, produces a 1 is začať sa učiť
|
|
|
|
|
The concept of order (Big O) is important because začať sa učiť
|
|
|
|
|
When we say an olgorithm has a time complexity of O(n), what does it mean? začať sa učiť
|
|
The computation time taken by the algorithm is proportional to n
|
|
|
What is recurrence for worst case of QuickSort and what is the time complexity in Worst case? začať sa učiť
|
|
Recurrence is T(n) = T(n-1) + O(n) and time complexity is O(n^2)
|
|
|
Suppose we are sorting an array of eight integers using quicksort, and we have just finished the first partitioning with the array looking like this: 2 5 1 7 9 12 11 10 Which statement is correct? začať sa učiť
|
|
The pivot could be either the 7 or the 9.
|
|
|
Which of the following is not an in-place sorting algorithm? začať sa učiť
|
|
|
|
|
Running merge sort on an array of size n which is already sorted is začať sa učiť
|
|
|
|
|
začať sa učiť
|
|
|
|
|
Which of the following algorithm design technique is used in the quick sort algorithm? začať sa učiť
|
|
|
|
|