4-7

 0    28 informačný list    adamomasz
vytlačiť hrať Skontrolujte sa
 
otázka - Odpoveď -
Grafy platońskie
začať sa učiť
grafy, utworzone z krawędzi i wierzchołków wielościanów foremnych (np: sześcian). Wszystkie są regularne i planarne.
Grafy dwudzielne (Km,n)
začať sa učiť
graf, którego zbiór wierzchołków można podzielić na dwa rozłączne zbiory tak, że krawędzie nie łączą wierzchołków tego samego zbioru. Równoważnie: graf, który nie zawiera cykli nieparzystej długości.
(Hiper-) kostki (Qi) -
začať sa učiť
hiperkostka Qi (rzędu i: wierzchołki są ciągami binarnymi długości i, są sąsiednie tylko gdy różnią się jednym bitem).
Qi = Qi-1 x Q1. Kostka Qn składa się z dwóch kopii kostki Qn-1 oraz dodatkowo łączymy krawędziami każdy wierzchołek z "pierwszej" kostki Qn-1 z jego kopią w "drugiej" kostce Qn-1,
Dopełnienie grafu
začať sa učiť
dopełnieniem G’ grafu G jest graf prosty, którego zbiorem wierzchołków jest V(G), i w którym dwa wierzchołki są sąsiednie w G’ ⇔ gdy nie są sąsiednie w G. G’ ma tylko te krawędzie, które były nieobecne w G.
Długość ścieżki
začať sa učiť
- liczba jej krawędzi
Droga (ścieżka) -
začať sa učiť
- naprzemienny ciąg wierzchołków i krawędzi (v0, e0, v1, eq, ..., vk, ek, ..., vl) taki, że krawędź ek zawsze łączy wierzchołki vk, vk+1. Droga prosta - nie powtarzają się krawędzie. Droga elementarna - nie powtarzają się wierzchołki
Cykl
začať sa učiť
- ścieżka o długości co najmniej 3 (... dla grafów skierowanych >= 2), taka, że v0 == vl (początek i koniec są tożsame)
Obwód grafu
začať sa učiť
długość najkrótszego cyklu elementarnego w grafe (czyli takiego cyklu, gdzie nie powtarzają się wierzchołki)
Zbiór rozspajający
začať sa učiť
taki zbiór krawędzi grafu, po usunięciu którego graf ma więcej składowych spójnych
Rozcięcie
začať sa učiť
minimalny zbiór rozspajający (żaden jego podzbiór właściwy nie jest rozspajający).
Spójność krawędziowa
začať sa učiť
grafu spójnego G (oznaczenie: λ(G)) to liczba krawędzi najmniejszego rozcięcia. Graf jest k-spójny krawędziowo wtedy, gdy k <= λ(G), np. C4 jest 1-spójny krawędziowo i 2-spójny krawędziowo, ale nie 3-spójny krawędziowo.
Zbiór rozdzielający
začať sa učiť
to taki podzbiór wierzchołków, po usunięciu którego (wraz z incydentnymi krawędziami) graf ma więcej składowych spójnych.
. Punkt artykulacji (wierzchołek rozdzielający/rozcinający)
začať sa učiť
wierzchołek grafu G, którego usunięcie zwiększa liczbę spójnych składowych grafu. Inaczej: jednoelementowy zbiór rozdzielający.
Podział grafu na bloki
začať sa učiť
Blok: maksymalny podgraf grafu nie zawierający wierzchołków rozdzielających dla tego podgrafu
Cykl Eulera
začať sa učiť
taki cykl, który nie powtarza krawędzi i zawiera wszystkie krawędzie grafu.
Graf eulerowski -
začať sa učiť
graf, w którym istnieje cykl Eulera, czyli daje się narysować bez odrywania długopisu zaczynając i kończąc w tym samym miejscu.
Ścieżka Eulera
začať sa učiť
ścieżka, która nie powtarza krawędzi i zawiera wszystkie krawędzie grafu.
. Pół-eulerowski
začať sa učiť
- taki, w którym istnieje ścieżka Eulera, czyli daje się narysować bez odrywania długopisu, niekoniecznie zaczynając i kończąc w tym samym miejscu.
Cykl Hamiltona
začať sa učiť
cykl zawierający każdy wierzchołek dokładnie raz.
Graf hamiltonowski
začať sa učiť
zawiera cykl Hamiltona
Pół-hamiltonowski
začať sa učiť
zawiera ścieżkę przechodzącą przez każdy wierzchołek dokładnie raz.
Drzewo
začať sa učiť
graf prosty, nieskierowany, który jest acykliczny i spójny, czyli taki graf, że z każdego wierzchołka drzewa można dotrzeć do każdego innego wierzchołka (spójność) i tylko jednym sposobem (acykliczność
Las
začať sa učiť
prosty, niespójny i nieskierowany graf acykliczny, (czyli nie zawierający żadnych cykli). Wtedy jego spójne składowe są drzewami.
Drzewo spinające (rozpinające)
začať sa učiť
Dla spójnego, nieskierowanego grafu prostego G=(V,E) to taki podgraf T tego grafu, który jest drzewem i zawiera wszystkie wierzchołki danego grafu. Graf niespójny nie posiada drzewa rozpinającego.
Jeśli graf G jest niespójny, to graf będący suma drzew rozpinających jego składowych spójnych nazywamy lasem rozpinającym.
Rząd cykliczności (Liczba cyklomatyczna) - 𝛄(G
začať sa učiť
liczba krawędzi dopełnienia dowolnego lasu rozpinającego grafu G.
Rząd rozcięcia - ξ(G)
začať sa učiť
liczba krawędzi w dowolnym lesie rozpinającym G. 𝛄(G) + ξ(G) = |E|
Zbiór cykli fundamentalnych
začať sa učiť
Niech L oznacza pewien las rozpinający grafu G. Zauważmy, że dodanie jakiejkolwiek krawędzi G nie należącej do L utworzy dokładnie jeden cykl. Taki cykl nazywamy cyklem fundamentalnym grafu G związanym z lasem rozpinającym L.
Zbiór cykli fundamentalnych związanych z lasem L to zbiór wszystkich taki cykli.
Zbiór rozcięć fundamentalnych
začať sa učiť
Niech L oznacza pewien las rozpinający grafu G. Gdy z lasu L usuniemy dowolną krawędź, to (w odpowiadającej jej składowe spójnej) powstają dwa rozłączne zbiory wierzchołków v1, v2.
Zbiór wszystkich krawędzi G takich, że jeden koniec jest w v1 a drugi w v2 tworzy rozcięcie, które nazywamy rozcięciem fundamentalnym związanym z lasem L. Zbiór wszystkich taki rozcięcie nazywamy zbiorem rozcięć fundamentalnych związanych z lasem L.

Ak chcete pridať komentár, musíte byť prihlásený.